Where communities thrive


  • Join over 1.5M+ people
  • Join over 100K+ communities
  • Free without limits
  • Create your own community
People
Activity
  • Dec 27 2019 17:00
    chapman2014 starred libmir/mir
  • Nov 25 2019 15:06
    BeardedBeaver starred libmir/mir
  • Nov 20 2019 02:28
    JeffCarpenter starred libmir/mir
  • Nov 13 2019 12:10
    J5ive starred libmir/mir
  • Oct 02 2019 07:06
    stevefan1999-personal starred libmir/mir
  • Sep 06 2019 09:09
    9il commented #402
  • Sep 05 2019 19:35
    mlabayru closed #402
  • Sep 05 2019 19:35
    mlabayru commented #402
  • Sep 05 2019 16:23
    9il commented #402
  • Sep 05 2019 16:23
    9il commented #402
  • Sep 05 2019 12:59
    mlabayru opened #402
  • Aug 08 2019 03:06
    liummistaken starred libmir/mir
  • Jul 27 2019 20:16
    dd86k starred libmir/mir
  • Jul 09 2019 20:56
    myfreeweb starred libmir/mir
  • Jul 06 2019 13:11
    krircc starred libmir/mir
  • May 12 2019 04:59

    9il on master

    Update README.md (compare)

  • May 12 2019 04:59

    9il on master

    Update README.md (compare)

  • May 10 2019 04:09
    bosskwei starred libmir/mir
  • Apr 16 2019 19:54
    salifm starred libmir/mir
  • Apr 13 2019 14:08
    9il closed #297
Ilya Yaroshenko
@9il
Ah, ok. BTW keep in mind that gen is TLS variable
Mathias L. Baumann
@Marenz
I don't plan on more threads yet :)
Francis Nixon
@pirocks
Hello. I'm having trouble compiling dcompute on debian 9. My dub.json looks like this:
{
    "name": "compute-messing-around",
    "authors": [
        "Francis Nixon"
    ],
    "description": "A minimal D application.",
    "license": "proprietary",
    "dependencies": {
        "dcompute": "~>0.1.0"
    },
    "dflags": ["-mdcompute-targets=ocl-210,cuda-350","-oq"]
}
The error I'm currently getting is:
../../.dub/packages/dcompute-0.1.0/dcompute/source/dcompute/driver/error.d(143,13): Error: undefined identifier `fprintf`
../../.dub/packages/dcompute-0.1.0/dcompute/source/dcompute/driver/ocl/context.d(144,19): Error: undefined identifier `clCreateProgramWithIL`
Nicholas Wilson
@thewilsonator
Thats embarrassing. libmir/dcompute@cee8eb3
I'm not sure why your clCreateProgramWithIL can't be found. Are you using an up to date DerelictCL?
Francis Nixon
@pirocks
The clCreateProgramWithIL error went away after manually selecting the most recent version of DerelictCL. I then got an error in the same place as the fprintf error, except for toStringz. Adding an import fixed that, but now I'm getting the following:
../../.dub/packages/dcompute-0.1.0/dcompute/source/dcompute/driver/error.d(139,32): Error: cannot implicitly convert expression `__lambda1` of type `void delegate(Status _status) @system` to `immutable(void delegate(Status) nothrow @nogc)`
../../.dub/packages/dcompute-0.1.0/dcompute/source/dcompute/driver/error.d(139,32): Error: cannot implicitly convert expression `__lambda1` of type `void delegate(Status _status) @system` to `immutable(void delegate(Status) nothrow @nogc)`
Nicholas Wilson
@thewilsonator
Hmm, that does seem odd, but that's my fault for not testing it properly.
Francis Nixon
@pirocks
If relevant my ldc version is:
LDC - the LLVM D compiler (1.7.0git-958e58c):
  based on DMD v2.077.1 and LLVM 3.8.1
  built with DMD64 D Compiler v2.077.1
  Default target: x86_64-pc-linux-gnu
  Host CPU: broadwell
Nicholas Wilson
@thewilsonator
Unless you have need to use the D_betterC version try without it. That should "work" (note the @BUG@ just above). You will need to set onDriverError yourself because of it, see e.g.
Thats not a compiler problem, thats me not testing properly. I really need to set up CI, but given the hardware required I haven't got around to it yet.
Thanks for pointing out the issues.
Francis Nixon
@pirocks
Without -betterC I get:
Invalid bitcast
  %3 = bitcast float addrspace(1)* %res_arg to float*
Invalid bitcast
  %5 = bitcast float addrspace(1)* %x_arg to float*
Invalid bitcast
  %9 = bitcast float addrspace(1)* %y_arg to float*
LLVM ERROR: Broken function found, compilation aborted!
Nicholas Wilson
@thewilsonator
Hmm, can you try with an LLVM that is 3.9 or greater (e.g. from the LDC release page)?
Also what registered targets does the LDC you are using have (just below the output of ldc2 --version you posted)?
Sebastian Wilzbach
@wilzbach
I have two good news:
1) libmir/mir-algorithm#122 - examples on the mir docs will be runnable soon (see http://files.wilzbach.me/dlang/mir-algorithm/mir_ndslice_algorithm.html)
2) https://tour.dlang.org/tour/en/dub/mir - the tour will be finally moving to integrate mir (thought writing a good one-page summary might turn out to be challenging)
Ilya Yaroshenko
@9il
Some news:
PR "Tarjan graph algorithm" libmir/mir-algorithm#121
Issue "ndslice based API for dopt" henrygouk/dopt#6
Issue "Dcompute based backend for dopt" henrygouk/dopt#6
Ilya Yaroshenko
@9il
EDIT: Issue "ndslice based API for dopt" henrygouk/dopt#7
Ilya Yaroshenko
@9il
kerdemdemir
@kerdemdemir
Hi Everybody I am trying to use multivariateNormalVar in mir.random.ndvariable for creating two separated data clusters (it is done in pyhton like: https://beckernick.github.io/logistic-regression-from-scratch/)
It doesn't work if I don't select resulting vector same size as sigma matrix
double[100] x1;   // Only works if the size is only 2 
Random* gen = threadLocalPtr!Random;
auto mu = [0.0, 0.0].sliced;
auto sigma = [1.0, 0.75, 0.75, 1].sliced(2,2);
auto rv = multivariateNormalVar(mu, sigma);
rv(gen, x1[]);
How can I use multivariateNormalVar to create data sets bigger than size 2
Shigeki Karita
@ShigekiKarita

how about this? (3dim random normal x 10)

/+dub.sdl:
dependency "lubeck" version="~>0.0.4"
dependency "numir" version="~>0.1.0"
libs "blas"
+/

import mir.ndslice : map, sliced, slicedField, ndarray;
import mir.random : threadLocalPtr, Random;
import mir.random.variable : NormalVariable;
import mir.random.algorithm : field;
import lubeck : mtimes;

import numir : alongDim;
import std.stdio;

void main() {
    Random* gen = threadLocalPtr!Random;
    auto mu = [0.0, 0.0, 0.0].sliced;
    auto sigma = [1.0, 0.75, 0.0,
                  0.75, 1.0, 0.75,
                  0.0, 0.75, 1].sliced(3,3);
    auto xs = field(gen, NormalVariable!double(0, 1)).slicedField(10, 3);
    auto x1 = xs.mtimes(sigma).alongDim!1.map!(x => x + mu).ndarray;
    x1.writeln; // 10 x 3 dim
}

https://run.dlang.io/gist/bd6dd9a2f6606151c707a6bdf6d0be36?compiler=ldc&args=-release
The multi normal random value is just an affine transformation of the standard normal random values. https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Affine_transformation

for creating two separated data clusters

Oh you wanna create two clusters! you can take my example in https://github.com/ShigekiKarita/d-tree/blob/master/example/plot_boundary/app.d

it looks like this
img

kerdemdemir
@kerdemdemir
Thanks I will check it out for now I come up with this solution
double[num_dimensions] x;

double[num_observations] x1;
double[num_observations] x2;
Random* gen = threadLocalPtr!Random;

auto mu = [0.0, 0.0].sliced;
auto sigma = [1.0, 0.75, 0.75, 1].sliced(num_dimensions,num_dimensions);
auto rv = multivariateNormalVar(mu, sigma);


void GenerateAndAssign(R)( R range, int index )
{
    rv(gen, x[]);
    range[index..(index+2)] = x;    
}
iota(0, num_observations, 2).each!(  a=> GenerateAndAssign(x1[], a) );

mu = [1.0, 4.0].sliced;
rv = multivariateNormalVar(mu, sigma);
iota(0, num_observations, 2).each!(  a=> GenerateAndAssign(x2[], a) );
kerdemdemir
@kerdemdemir
Hi I am trying really hard to use desicionTree just as https://github.com/ShigekiKarita/d-tree/blob/master/example/plot_boundary/app.d
Unfortunately I couldn't made this work :
enum numberOfFeatures = 7; 
enum numberOfOutputs = 2;
auto dataMatrix = dataRaw.sliced( dataRaw.length/numberOfFeatures , numberOfFeatures ).slice;  
auto labelVector = labelRaw.sliced( ).slice;


auto gtree = ClassificationTree!gini(numberOfOutputs);
gtree.fit(dataMatrix, labelVector);
I spent too much time on it but couldn't succeed to compile
But meanwhile the code in the example compiles:
auto nsamples = 200;
auto ndim = 2;
auto xs = normal(nsamples, ndim).slice;
// TODO: add to numir.random
auto gen = Random(unpredictableSeed);
auto rv = BernoulliVariable!double(0.5);
auto ys = iota(nsamples).map!(i => cast(long) rv(gen)).slice;
foreach (i; 0 .. nsamples) {
    if (ys[i] == 1.0) { xs[i][] += 2.0; }
}

auto gtree = ClassificationTree!gini(2, 10);
gtree.fit(xs, ys);
I really can't see what I am doing wrong I printed all slices their shapes are allright
The final error I am getting is
../../.dub/packages/d-tree-0.0.1/d-tree/source/dtree/decision.d(101,17): Error: template mir.ndslice.slice.Slice!(cast(SliceKind)2, [1LU], double).Slice.opIndexUnary cannot deduce function from argument types !("++")(double), candidates are:
../../.dub/packages/mir-algorithm-0.9.3/mir-algorithm/source/mir/ndslice/slice.d(2710,18): mir.ndslice.slice.Slice!(cast(SliceKind)2, [1LU], double
).Slice.opIndexUnary(string op)(size_t[packs[0]] _indexes...)
kerdemdemir
@kerdemdemir
Very sorry guys because the spam. I found my label vector was typed "double" which does not have ++ operator. I found the solution.
Shigeki Karita
@ShigekiKarita
I made a helper package mir-pybuffer for communication with numpy arrays in buffer protocol (sorry for posting again)
Bastiaan Veelo
@veelo
Hey there, I'm new here. Does mir support nd arrays over arbitrary intervals, i.e., with indices not starting at 0?
Shigeki Karita
@ShigekiKarita
how about iota([5], 1) that is [1, 2, 3, 4, 5]
Bastiaan Veelo
@veelo
Thanks, but that is just an array filled with values 1 .. 5, with indices running from 0 .. 4. I am looking for something to translate from Extended Pascal
type PositiveInteger = 1 .. MaxInt;
     Matrix (n, m: PositiveInteger) = array [1 .. n, 1 .. m] of Integer;
var mat: Matrix(4, 7);
where mat[1,1] would refer to the top left element. Or mat[1][1], that would be fine too.
Bastiaan Veelo
@veelo
mat[0,0] would be out of bounds.
Bastiaan Veelo
@veelo

I guess this is the closest I can come:

auto mat = slice!int(4, 7);
auto idx = IotaIterator!int(-1);

and use mat[idx[1], idx[1]] to address the top-left element.

Ilya Yaroshenko
@9il
Hi Bastiaan,
mir does not support arbitrary intervals for indexing.
Slightly more portable variant of your solution:
auto mat = slice!int(4, 7);
auto idx = IotaIterator!sizediff_t(-1);
Bastiaan Veelo
@veelo
Hi Ilya, thanks for your confirmation. Very impressive work, by the way!
Ilya Yaroshenko
@9il
Mir Optim preview - https://github.com/libmir/mir-optim . Also, Lubeck v0.1.0 has been released (new system libraries dependency configuration).
Lance Bachmeier
@bachmeil
Does mir-random work for parallel random number generation?
Nicholas Wilson
@thewilsonator
You should be able to use the PCG generators with different streams in parallel. Use https://github.com/libmir/mir-random/blob/master/source/mir/random/engine/pcg.d#L175 with the second argument different for each item of parallel work.