Clock-dependent hazards I think are actually pretty common
Agree, but I feel like the common strategy is to use a regression model or fit N univariate models (i.e. partition the data)
I think a seasonal model is a great idea, so I want this to work.
@CamDavidsonPilon Let me know if you have any suggestions for question below:
Hi, I am using CoxPHFitter with IPS weights and
robust=True
flag. However, the fit is taking really long time to finish. I have about million instances and 6 features in my dataset. Let me know if slower runtime is expected in weighted version and what can be done to speed it up.
Hi all. I've somewhat new to using lifelines, and in using the CoxPHFitter, when I run check_assumptions
, I end up with an error that reads as follows: /RuntimeWarning: overflow encountered in exp scores = weights * np.exp(np.dot(X, self.params_))
Any suggestions on dealing with this issue? I'm starting down the road of normalization, but I'm not sure if that's 100% correct.