scikit-learn: machine learning in Python. Please feel free to ask specific questions about scikit-learn. Please try to keep the discussion focused on scikit-learn usage and immediately related open source projects from the Python ecosystem.
thomasjpfan on main
DOC Fixes typo in empirical_cov… (compare)
@amueller I don't know if this helps:
I ran
from scipy import linalg
import numpy as np
m, n = 9, 6
a = np.random.randn(m, n) + 1.j*np.random.randn(m, n)
U, s, Vh = linalg.svd(a)
print(U.shape, s.shape, Vh.shape)
cProfile
says:
394 0.004 0.000 0.017 0.000 <frozen importlib._bootstrap_external>:1233(find_spec)
900 0.004 0.000 0.004 0.000 {built-in method posix.stat}
1 0.006 0.006 0.006 0.006 lil.py:23(lil_matrix)
81/24 0.007 0.000 0.011 0.000 sre_compile.py:64(_compile)
402/399 0.011 0.000 0.022 0.000 {built-in method builtins.__build_class__}
212/1 0.023 0.000 0.222 0.222 {built-in method builtins.exec}
190 0.024 0.000 0.024 0.000 {built-in method marshal.loads}
39/37 0.038 0.001 0.043 0.001 {built-in method _imp.create_dynamic}
(sorted by second column)
9 0.000 0.000 0.000 0.000 __future__.py:79(__init__)
9 0.000 0.000 0.000 0.000 _globals.py:77(__repr__)
9 0.000 0.000 0.000 0.000 {method 'encode' of 'str' objects}
9 0.000 0.000 0.000 0.000 {method 'keys' of 'dict' objects}
9 0.000 0.000 0.000 0.000 os.py:742(encode)
9 0.000 0.000 0.001 0.000 abc.py:151(register)
9 0.000 0.000 0.001 0.000 datetime.py:356(__new__)
900 0.001 0.000 0.005 0.000 <frozen importlib._bootstrap_external>:75(_path_stat)
900 0.004 0.000 0.004 0.000 {built-in method posix.stat}
936 0.000 0.000 0.000 0.000 <frozen importlib._bootstrap>:321(<genexpr>)
96 0.000 0.000 0.000 0.000 enum.py:630(<lambda>)
39/37 0.038 0.001 0.043 0.001 {built-in method _imp.create_dynamic}
1 0.002 0.002 0.002 0.002 __init__.py:259(_reset_cache)
1 0.006 0.006 0.006 0.006 lil.py:23(lil_matrix)
(sorted by third column)
@amueller when I run this code:
train_scores, valid_scores = validation_curve(estimator=pipeline, # estimator (pipeline)
X=features, # features matrix
y=target, # target vector
param_name='pca__n_components',
param_range=range(1,50), # test these k-values
cv=5, # 5-fold cross-validation
scoring='neg_mean_absolute_error') # use negative validation
directly on the host (with 24 cores) I get ~30 seconds. When I run it directly on localhost (4 cores, 8 threads) I get around 30-40 seconds as well. When I run inside docker with cpu limit of 6 cores and 6GB RAM, it needs almost 10 minutes. Inside a VirtualBox with 2 cores.. around 30 seconds, seems scikit does not play well with docker limitations which uses the CFS Scheduler: link
param_range
to range(1,5)
the code runs much faster (I am no data scientist)
validation_curve
does not really profit from multithreading/multiprocessing. I get almost same results on intel i7 (4 cores) and intel xeon (24 cores). The problem is that if the validation curve runs on the xeon machines.. it uses all cores and the machine is overloaded, which makes no sense, really :)
conda install numpy scipy cython matplotlib pytest flake8 sphinx sphinx-gallery
or something like that
mkl
(from conda or pip)
cd doc
make html
should work all OS I think
_build/html
folder and you can search for the index.html